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I N T R O D U C T I O N  

Many studies of the motion of gas bubbles are reported in the literature (Bhaga & Weber 1981; 
Clift et al. 1978; Harper 1972). Due to the complexity of the problem, much of the theory is 
confined to the steady motion of bubbles assumed to be spherical or oblate ellipsoidal (Moore 1963, 
1965). 

Nevertheless, the unsteady initial rise and deformation of bubbles has also received some 
attention. Most physically realistic models of gas bubble formation deal with a bubble emerging 
from some form of  orifice (Longuet-Higgins et al. 1991; O~uz & Prosperetti 1993). The rise from 
rest of an initially spherical gas bubble is a more fundamental problem and so also deserves study. 
The practical difficulties of experimentally investigating this were highlighted by Walters & 
Davidson (1962). Calculations of the unsteady rise of  single deforming bubbles have been made 
by Lundgren & Mansour (1991) with the aim of examining vortex ring bubbles. In this short note 
we examine some of the effects on the motion and deformation due to the interaction of a pair 
of bubbles rising in an axisymmetric geometry. 

R E S U L T S  

In the calculations described below, we assume that the Reynolds number is sufficiently large 
that viscous effects can be neglected and we solve for the motion of the bubbles using a boundary 
integral method. A description of this technique can be found in, for example, Guerri et al. (1981) 
or in Best & Kucera (1992), a modified version of  whose code was used for these calculations. 

Before describing the numerical results for the interaction of a pair of gas bubbles, we shall 
summarize (see figure 1) the effect of bubble size on the rise of  single bubbles (Lundgren & Mansour 
1991). The extent of bubble deformation is characterized by the E6tv6s number, given by 
Eo = 4 pga2/a  where a is surface tension and a is the bubble radius. For  a large E6tv6s number 
[Eo = 212, figure l(a)], the effect of surface tension, which acts so as to prevent increases in surface 
area, is small and so a narrow jet of fluid is allowed to form below the bubble, eventually impacting 
on the upper surface. In reality, the bubble would then evolve into a toroidal vortex ring bubble 
(Lundgren & Mansour 1991). With decreasing E6tv6s number, the jet becomes slower and less 
sharp. When the E6tv6s number becomes less than about 32.3, the jet fails to reach the far side 
of the bubble before widening and forming a jet directed radially outwards, ultimately pinching 
off a toroidal bubble and leaving behind a spherical cap [see figure l(b)]. As the E6tv6s number 
decreases further, the volume of the toroidal bubble released decreases (see figure 2) owing to a 
yet shorter, wider jet. For the case Eo = 13.2, shown in figure l(c), the bubble evolves into a shape 
resembling a skirted bubble. The jet does not impact on the side of  the bubble but surface tension 
pulls the sharp rim upwards and towards the centre of the bubble. For smaller E6tv6s number 
[Eo = 4.8, figure l(d)] a very slow indentation forms at the rear, but it is too wide to result in the 
formation of a skirt. 
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Figure I. Shapes taken up by axisymmetric gas bubbles of  various sizes. Smaller values of  the E6tv6s 
number  correspond to smaller bubbles and thus a greater effect of  surface tension. Eo takes the values 
(a) 212, (b) 29.8, (c) 13.2 and (d) 4.8, equivalent to air bubbles in water of  radii 2cm, 7.5, 5 and 3 mm. 
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Figure 2. The non-dimensional volume fraction of the toroidal ring bubble formed when a single bubble 
becomes multiply-connected, plotted against the E6tv6s number.  Actual data points are indicated by a 

circle (©). 

(b) (o) 

Figure 3. Calculated shapes of a pair of  axisymmetric gas bubbles initially separated by 2.5 bubble radii. 
(a) Eo = 212, (b) Eo = 29.8 and (c) Eo = 13.2. 
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As ment ioned briefly by Lundgren  & Mansou r  (1991), one major  difference between axi- 
symmetric  and two-dimensional  bubble rise [see, for example, Boul ton-Stone (1993)] is that  for 
large axisymmetric bubbles [figure l(a)] jets may  penetrate the bubble and impinge on its upper  
surface, whereas in two-dimensions this is not  so: even in the limit Eo --, ~ ,  the jet broadens out  
due to the downward  pull o f  gravity before being able to reach the far side. Thus the broadening 
o f  the jet in the axisymmetric case [figure l(b)] is a result o f  surface tension rather than o f  gravity. 

There are a number  o f  interesting effects b rought  about  by the interaction o f  a rising bubble with 
a second nearby bubble. Here we examine a few cases o f  a pair o f  bubbles rising in an axisymmetric 
geometry,  one bubble initially 2.5 bubble radii beneath the other. 

Concent ra t ing  on those bubbles large enough for a jet to form (figure 3) we find the jet o f  the 
upper  bubble to be noticeably broader  than that  o f  the lower bubble. In figure 3(a) the upper  bubble 
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Figure 4. The effect of bubble-bubble interaction for the case Eo = 29.8 on: (a) the jet length approximated 
in terms of the height of the tip of the jet, Z 0, and the centroid height, Z c, by Z 0 - Z ¢  + 1; and (b) the 

change in centroid height, Zc( t ) -  Zc(0). 
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jet is also slightly broader than in the case of  a single bubble of  the same size [figure l(a)]; 
comparison is more difficult for the smaller bubbles in figures l(b) and 3(b) due to the earlier 
pinch-off of  a toroidal bubble from the lower bubble, and hence break-down of the numerical code, 
when the second bubble is present. 

A slightly increased pressure below the upper bubble, owing to the stagnation point at the top 
of the lower bubble, has the effect of making the tip speed of the jet on the upper bubble faster 
than for a single bubble of  equal size. This is seen clearly in figure 4(a) for Eo = 29.8 (but the effect 
seems quite general), where the jet lengths, approximated by the change in distance between the 
jet tip and the bubble centroid, of  the bubbles for the two-bubble case are compared against the 
single-bubble case. Further, for Eo = 29.8 (and this effect is much less pronounced for the larger 
bubbles), figure 4(a) shows the jet on the lower bubble to be faster than the jets of  both the single 
bubble and of its companion bubble over much of the rise. This can be seen as a result of the lower 
bubble becoming thinner due to the flow around the upper bubble, therefore rising faster [see figure 
4(b)]. A similar "slipstreaming" behaviour was reported for the two-dimensional case (Robinson 
et al. 1995). 

Figure 4(a) indicates that, for Eo = 29.8, the length of the jet eventually decreases owing to the 
significant jet broadening which occurs for bubbles of  this size. This is more noticeable for the lower 
bubble of  the bubble pair due to the additional upward motion of the centroid induced through 
the draw-up of the top of the lower bubble into the jet of  the upper bubble. This effect, seen in 
the bubble shapes of  figure 3, is not as great as in the two-dimensional case (Robinson et al. 1995). 
We explain the difference in terms of the volume flow rate across a normal to a sphere, radius a, 
placed in a uniform stream with q~ ~ U z at infinity. We see that this is U~a sin 2 0, the unit length 
of normal. The corresponding rate for a cylinder is Ul sin 0, where l is the length of the cylinder. 
Since for small 0, the expression for the spherical case is an order of magnitude smaller, we may 
expect the fluid in the jet of the axisymmetric bubble to originate mainly from the sides rather than 
from directly underneath. Comparing Lundgren & Mansour 's  figure 2(a) to figure 1 from 
Boulton-Stone (1993) both for large bubbles with buoyancy dominant ~ bears  this out: the initial 
jet is noticeably narrower for the case of  the cylindrical bubble. Consequently, in the axisymmetric 
case when a second bubble obstructs the flow beneath the upper bubble, the bulk of the volume 
of the jet comes from the sides, and so the draw-up of the lower bubble into the jet is not as great 
as in the two-dimensional case. 

The reduced virtual mass of the bubble pair system, as compared with the single bubble, has 
the effect that the bubble pair, taken as a whole, rises faster. That  this is the case is verified by 
reference to figure 4(b). The main contribution to the greater centroid velocity of a pair of  bubbles 
is the more rapid rise of the lower bubble, as pointed out above; the upper bubble rises at a speed 
comparable to that of the single bubble. 

For small E6tv6s numbers, e.g. Eo = 13.2 shown in figure 3(c), the interaction between bubbles 
is less strong due to the widening of the bubble profiles which takes places as very broad jets form, 
thus effectively increasing bubble separation. In general, however, the interaction is as for the larger 
bubbles: the lower bubble becoming taller and narrower than the upper one. 
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